
The heuristic method (HM) and support vector machine (SVM)
were used to construct quantitative structure–retention
relationship models by a series of compounds to predict the
gradient retention times of reversed-phase high-performance liquid
chromatography (HPLC) in three different columns. The aims of
this investigation were to predict the retention times of multifarious
compounds, to find the main properties of the three columns, and
to indicate the theory of separation procedures. In our method, we
correlated the retention times of many diverse structural analytes
in three columns (Symmetry C18, Chromolith, and SG-MIX) with
their representative molecular descriptors, calculated from the
molecular structures alone. HM was used to select the most
important molecular descriptors and build linear regression
models. Furthermore, non-linear regression models were built using
the SVM method; the performance of the SVM models were better
than that of the HM models, and the prediction results were in
good agreement with the experimental values. This paper could
give some insights into the factors that were likely to govern the
gradient retention process of the three investigated HPLC columns,
which could theoretically supervise the practical experiment.

Introduction

Chromatographic techniques have been widely applied to
many drug separations and analysis research. Reversed-phase
liquid chromatography (RPLC) is one of the most popular
chromatographic techniques in the separation science. Extensive
studies have been carried out over several decades to improve the
understanding of the solute retention mechanism, but much
remains to be illustrated. There have been several approaches
used to interpret the solute retention mechanism, including clas-
sical thermodynamics, kinetics of molecular interaction (1), and
quantitative structure–retention relationships (QSRR) (2–3).

QSRR studies quantify the relationships between the chro-
matographic behavior determined by a representative series of

analytes in given separation systems and the molecular struc-
tural parameters (i.e., physico-chemical properties or molecular
descriptors) accounting for the structural differences among the
various analytes (4). In the last two decades of the twentieth cen-
tury, QSRR has often been applied to the following aims (5): (i)
To predict retention for a new solute; (ii) To identify the most
important structural descriptors relevant to the retention
behavior of a solute; (iii) To gain insight into the molecular
mechanism of separation operating in a given chromatographic
system; (iv) To evaluate properties of stationary phases.

The QSRR approach provides a promising method for the esti-
mation of retention behavior of solutes based on the descriptors
derived from the molecular structures alone to fit experimental
data. The advantages of this approach lie in the fact that it mainly
requires the information of chemical structures and few
experimental data; therefore, it saves much time and money. The
main steps of this method include data collection, molecular
descriptor generation and selection, model development, and
finally, model evaluation.

In this investigation, the software CODESSA, developed by
Katritzky group, was used to calculate a large number of descrip-
tors. These include constitutional descriptors, topological
descriptors, electrostatic descriptors, and quantum chemistry
descriptors. The CODESSA combines diverse methods for quan-
tifying the structural information about the molecule with
advanced statistical analyses to establish molecular structure-
property/activity/retention relationships. The heuristic method
(HM) implemented in the framework of the CODESSA program
was used to perform a complete search for the best multi-linear
correlations with a multitude of descriptors. So far, this software
has been successfully applied to many similar analyses (6–8).

In the early studies, most of the models were built based on
multi-linear regression (9–13). In recent years, artificial neural
network (14–15) has become a very popular and powerful
chemometrics tool to solve some chemical problems, including
optimization of chromatographic analysis (16–19). Even though
the artificial neural network method can offer high accuracy in
most cases, it can also suffer from over-fitting the data and poor

396

Abstract

Quantitative Structure-Retention Relationship
Models for the Prediction of the Reversed-Phase
HPLC Gradient Retention Based on the Heuristic
Method and Support Vector Machine

Hongying Du, Jie Wang, Xiaojun Yao, and Zhide Hu*
Department of Chemistry, Lanzhou University, Lanzhou 730000, China

Reproduction (photocopying) of editorial content of this journal is prohibited without publisher’s permission.

Journal of Chromatographic Science, Vol. 47, May/June 2009

* Author to whom correspondence should be addressed: email huzd@lzu.edu.cn.



Journal of Chromatographic Science, Vol. 47, May/June 2009

397

Table I. The Compounds and Predicted Results of the Retention Time (min)

Chromolith Symmetry C18 SG-MIX

SVM HM SVM HM SVM HM
No. Model analytes tRexp tRcalc tRcalc tRcalc tRcalc tRcalc tRexp tRexp tRexp

1 Benzamide 4.75 5.43 5.70 8.12 8.18 9.91
2* 4-Cyanophenol 6.00 5.42 6.06 9.78 8.71 9.44 11.60 9.17 9.82
3 Indazole 7.55 5.96 7.07 11.30 9.69 10.00 11.55 12.49 12.34
4 Benzonitrile 7.28 7.25 7.42 11.23 11.17 11.93 10.92 11.06 11.61
5 Indole 8.24 8.34 8.37 12.23 12.17 12.43 12.75 13.38 13.24
6 2-Naphthol 9.33 9.55 9.44 13.12 13.18 12.80 13.72 13.00 12.81
7 Anisole 9.12 9.20 9.22 13.37 13.43 12.70 12.57 12.17 12.83
8 Benzene 9.12 9.20 9.52 13.57 13.63 14.31 12.12 12.21 13.10
9* 1-Naphthylacetonitrile 9.65 9.69 8.84 13.47 13.97 13.42 14.08 13.80 13.43

10 Benzyl chloride 10.08 10.75 10.49 14.23 15.94 15.37 13.88 14.00 14.10
11 Naphthalene 11.31 11.34 11.18 15.57 15.51 15.40 15.13 15.13 14.94
12 Biphenyl 12.08 12.00 11.92 16.35 16.41 16.19 15.88 15.46 15.24
13* Phenanthrene 12.61 12.77 13.00 17.25 17.51 18.15 16.58 16.81 16.94
14 Pyrene 13.39 13.31 13.88 18.87 18.81 19.33 17.23 17.25 18.35
15 2,29-Dinaphthyl ether 14.00 13.92 14.69 19.62 19.68 20.51 17.80 17.78 17.88
16 Toluene 10.51 10.43 10.45 14.82 14.76 14.45 13.78 13.80 14.07
17 Ethylbenzene 11.33 11.40 11.18 15.63 15.59 15.64 14.78 14.91 14.69
18 n-Propylbenzene 12.08 12.16 11.90 16.45 16.39 16.02 15.62 15.42 15.01
19 n-Butylbenzene 12.69 12.77 12.59 17.30 17.27 16.86 16.27 16.25 15.60
20 n-Amylbenzene 13.23 13.20 13.20 18.28 18.28 17.62 16.78 16.73 16.06
21 n-Hexylbenzene 13.81 13.62 13.89 19.48 19.42 18.37 17.23 17.20 16.59
22 Cumene 11.89 11.97 11.69 16.18 16.28 16.26 15.42 15.60 15.14
23 2-Ethyltoluene 11.97 11.69 11.34 16.33 16.47 16.42 15.58 15.49 15.12
24 1,2,3-Trimethylbenzene 12.03 11.78 11.57 16.35 16.19 17.11 15.52 16.81 16.05
25* 1,3,5-Trimethylbenzene 12.27 11.86 11.62 16.77 16.17 15.59 15.73 15.39 15.00
26 Anthracene 12.72 13.11 13.45 17.55 17.61 17.02 16.63 17.26 17.31
27 1-Methylnaphthalene 12.03 11.95 11.71 16.40 16.34 16.01 15.78 15.96 15.66
28 1-Bromonaphthalene 12.35 12.14 11.77 16.87 16.91 17.50 16.25 16.23 16.03
29 o-Xylene 11.25 10.76 10.51 15.63 15.43 15.76 14.75 14.77 14.60
30 m-Xylene 11.41 10.75 10.53 15.78 15.45 15.04 14.88 13.97 14.08
31* p-Xylene 11.41 11.23 11.05 15.22 15.27 14.97 15.18 14.88 14.68
32 3-Cyanobenzoic acid 6.56 6.13 6.03 10.28 9.54 10.13 10.93 10.39 10.14
33* 3-Fluorobenzoic acid 8.21 7.51 7.47 12.05 11.55 11.38 11.85 11.06 11.05
34 o-Toluic acid 8.69 8.01 7.73 12.45 12.39 12.48 12.07 12.05 11.41
35 p-Toluic acid 8.88 8.80 8.49 12.58 12.37 12.28 12.35 12.30 12.13
36 4-Ethylbenzoic acid 9.87 9.95 9.27 13.62 13.68 13.28 13.42 13.39 12.91
37 3-Hydroxybenzoic acid 5.47 5.55 5.60 9.08 9.14 9.14 8.77 8.75 8.63
38 4-Hydroxybenzoic acid 4.59 5.92 6.52 7.97 9.02 9.42 8.02 8.37 9.64
39 Benzoic acid 7.55 7.24 7.37 11.32 11.38 11.70 10.80 10.82 10.81
40 1-Naphthylacetic acid 9.52 12.29 11.96 13.20 13.26 14.75 13.38 15.40 15.15
41 Acetylsalicylic acid 6.99 7.07 7.20 10.57 10.63 10.07 10.45 10.47 10.63
42 Naproxen 10.35 10.27 9.79 14.07 14.01 15.09 14.17 14.15 14.10
43 Fenbufen 10.51 10.59 9.87 14.17 14.23 13.75 14.37 14.39 13.92
44 Diclofenac 11.47 11.39 11.80 15.32 15.38 15.55 15.55 16.15 16.56
45 2-Chloroaniline 7.36 7.28 7.52 11.92 11.49 12.11 11.50 12.09 11.84
46 2-Methoxyaniline 7.49 7.49 7.62 11.65 11.59 10.49 12.08 11.77 11.74
47* 3,4-Dichloroaniline 9.04 8.43 7.92 13.18 13.18 13.54 13.70 13.12 12.87
48 3,5-Dichloroaniline 9.79 8.57 8.15 13.92 13.13 12.60 14.18 12.28 12.23
49 3,5-Dimethylaniline 8.11 8.19 8.34 12.40 12.50 12.26 12.02 12.36 12.25
50 3-Chloroaniline 7.33 7.41 7.43 11.73 11.79 11.99 11.67 11.49 11.61
51 3-Methylaniline 6.29 7.04 7.54 10.88 11.39 11.69 10.07 11.51 11.45
52* 4-Chloroaniline 7.17 7.46 7.38 11.65 11.82 12.06 11.58 11.55 11.81
53* n-Ethylaniline 8.48 8.43 8.26 12.98 12.93 11.76 12.23 12.09 12.08

* Compounds in the test set.



reproducibility of results. This is due to random initialization of
the network, variation of stopping the criteria, and lack of infor-
mation regarding the classification produced (20). As mentioned
previously, there is still a need to apply more accurate and
informative techniques to QSRR analytes.

As a new and powerful modeling tool, the support vector
machine (SVM) has recently gained much interest in pattern
recognition and function approximation applications. This
nonlinear method has proven to be very effective for addressing
the general purpose of classification and regression problems
(21–26). In most of these cases, the performance of SVM mod-
eling is significantly better than the traditional machine learning
approaches, including artificial neural networks. Compared with
traditional regression and neural network methods, SVM has
some advantages, including global optimization, good general-
ization ability, and dimensional independence (27–29). Its flexi-
bility in classification and the ability to approximate continuous
function make SVM very suitable for quantitative structure–
activity relationship and quantitative structure–property rela-
tionship studies.

In this investigation, SVM was used for the prediction of the
retention time of a diverse set of solutes in three different RP-
high-performance liquid chromatography (HPLC) columns
using the molecular descriptors calculated by the software
CODESSA and selected by the HM method. The structural fac-
tors affecting the compounds’ retention behaviors on these
columns and the characteristics of the three columns were also
investigated. This study provides a new method to investigate the
relationship between the characteristics of columns and the
retention behavior of the analytes.

Method

Data set
The data set was collected from ref. 30, including benzene

derivatives, organic acid derivatives, aniline derivatives, and other
compounds. The following columns were employed: Symmetry
C18, 15.0 × 0.46 cm i.d., particle size 5 µm (Waters, Milford, MA),
packed with octadecylbonded silica; Chromolith, 10.0 × 0.46 cm

i.d. (Merck KGaA, Darmstadt, Germany) made of a highly porous
monolithic rod of silica; and SG-MIX column, 25.0 × 0.40 cm i.d.,
particle size 5 µm (Nicolaus Copernicus University, Toruń,
Poland). All the mobile phases contained methanol and TRIS
buffer of pH 2.5 or 7.2 for the suitable separation.

A complete list of these compounds’ names and corresponding
experimental retention times are given in Table I. The data set
was randomly divided into two subsets: the training set and the
test set. The training set of 50 compounds was used to build
regression models, and the test set of 12 compounds was used to
evaluate the prediction capability of the model.

Descriptor calculation
To obtain a QSRR model, compounds were often represented

by the molecular descriptors. All of the structures of the
molecules were drawn with the software ISIS Draw, and then the
structures were imported into the HYPERCHEM program and
pre-optimized using the MM+ molecular mechanics force field.
A more precise optimization was done with the semi-empirical
PM3 method. Then the molecular structures were exported into
the software MOPAC and the quantum properties were calcu-
lated using the PM3 method. The MOPAC output files were used
by the CODESSA program to calculate five classes of descriptors:
constitutional (number of various types of atoms and bonds,
number of rings, molecular weight); topological (Wiener index,
Randic indices, Kier-Hall shape indices, etc.); geometrical
(moments of inertia, molecular volume, molecular surface area,
etc.); electrostatic (minimum and maximum partial charges,
polarity parameter, charged partial surface area descriptors,
etc.); and quantum chemical (reactivity indices, dipole moment,
HOMO and LUMO energies, etc.) (31). In this study, a total of 420
descriptors were generated by the CODESSA program to repre-
sent the compound structures.

The selection of the descriptors based on HM (31)
After molecular descriptors were generated, the HM was also

used to select the most important descriptors based on the
training set. It then built a linear regression model at the same
time. The advantages of this method are its rapid selection and
no matter for the data size. Furthermore, the method can
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Table I. (continued) The Compounds and Predicted Results of the Retention Time (min)

Chromolith Symmetry C18 SG-MIX

SVM HM SVM HM SVM HM
No. Model analytes tRexp tRcalc tRcalc tRcalc tRcalc tRcalc tRexp tRexp tRexp

54* Coumarin 6.56 7.77 8.37 10.88 10.08 12.95 11.40 11.24 12.28
55 Phthalimide 4.91 4.90 5.26 9.53 9.47 9.03 9.65 9.67 10.14
56 Phthalonitrile 5.55 5.47 5.33 9.65 9.71 10.41 10.30 10.28 10.24
57 1,4-Naphthoquinone 7.57 7.65 7.53 12.03 12.09 11.38 12.08 12.06 11.36
58 Phenylacetylene 9.49 10.26 10.19 13.80 14.19 13.72 13.45 13.37 13.75
59* Carbazole 10.40 10.83 9.90 14.53 14.54 14.64 15.10 15.78 14.79
60 9,10-Anthraquinone 10.93 10.85 9.90 15.17 15.11 14.41 15.17 15.15 14.46
61 Xanthene 12.43 12.51 12.13 17.77 17.71 17.07 16.25 16.27 15.97
62* Hexachlorobutadiene 12.93 12.79 12.74 17.53 16.82 17.38 16.48 17.47 17.30

* Compounds in the test set.



demonstrate which descriptors have bad or missing values,
which ones were insignificant, and which ones were highly inter-
correlated. This information is helpful in reducing the number
of descriptors involved in a search of the best QSRR model.

First of all, the descriptors were checked to ensure that the
values of each descriptor were available for each structure, and
that there was a variation in these values. Descriptors for values
that were not available for every structure were discarded.
Descriptors having a constant value for all structures in the data
set were also discarded. Thereafter, all possible one-parameter
regression models were tested and insignificant descriptors were
removed. As a next step, the program calculated the pair correla-
tion matrix of descriptors and further reduced the descriptors
pool by eliminating highly correlated descriptors. All two-param-
eter regression models with remaining descriptors were subse-
quently developed and ranked by the regression correlation
coefficient. A stepwise addition of further descriptor scales was
performed to find the best multi-parameter regression models
with the optimum values of statistical criteria (highest values of
R2, the cross-validated R2

CV, and the F-value).

SVM
The foundation of SVM was developed by Vapnik, and they are

gaining popularity due to many attractive features and promising
empirical performance (27–29). Compared with traditional
neural networks, SVM possess prominent advantages: (i) A strong
theoretical background provides SVM with high generalization
capability and avoids local minima; (ii) SVM always has a solution,
which can be quickly obtained by a standard algorithm (quadratic
programming); (iii) SVM need not determine network topology in
advance, which can be automatically obtained when the training
process ends; (iv) SVM builds a result based on a sparse subset of
training samples, which reduces the workload (32).

Originally, SVM was developed for the pattern recognition
problems. With the introduction of ε-insensitive loss function,
SVM has been extended to solve nonlinear regression estimation
and time series prediction (33). Theories of support vector clas-
sification and regression can be found in the tutorials for SVM
(28). For this reason, we will only briefly describe the main idea
of support vector regression here.

SVM can be applied to regression problems by the introduc-
tion of an alternative loss function. In support vector regression,
the input x (descriptor) is fist mapped into a higher dimensional
feature space by the use of kernel function. Thus a non-linear
feature mapping will allow the treatment of non-linear problems
in a linear space. The prediction or approximation function used
by a basic SVM is:

where xi is a feature vector corresponding to a training object,
K(x,xi) is a kernel function, α i is a coefficient. The component of
vector α and the constant b represent the hypothesis and are
optimized during the training. K(x,xi) is a kernel function which
value is equal to the inner product of two vectors x and xi in the
feature space φ(x) and φ(xi). That is, K(x,xi) = φ(x)·φ(xi). The ele-
gance of using kernel function lies in the fact that one can deal
with feature spaces arbitrary dimensionality without having to

compute the map φ(x) explicitly, and it may be useful to think of
the kernel, K(x,xi), as comparing patterns, or as evaluating the
proximity of objects in their feature space. Thus, a test point is
evaluated by comparing it to all training points.

For a given dataset, the kernel function and the regularity
parameter C must be selected to specify one SVM. Any function
that satisfies Mercer’s condition can be used as the kernel func-
tion. In support vector regression, the Gaussian kernel K(u,v) =
exp(–γ* |u – v|2) is most commonly used.

All calculation programs implementing SVM were written in
R-file based on R script for SVM. All scripts were compiled using
R 1.7.1 compiler running operating system on a Pentium IV with
512 M RAM.

Results and Discussion

HM
As 420 descriptors were generated by using the CODESSA pro-

gram, the next step was to use an efficient method to pick out the
most popular descriptors. As one of the most powerful tools, HM
investigated a variety of subset sizes to determine the optimum
numbers of all the calculated descriptors. When the addition of
another descriptor did not significantly improve the statistics of
a model, it was determined that the optimum subset size had
been achieved. To avoid the “overparametrization” of the model,
an increase of the R2 value of less than 0.02 was chosen as the
breakpoint criterion. The root-mean-square error (RMSE) was
used as an error function which was defined as in the following:

where di are the desired outputs in the training set, oi are the
actual outputs obtained from the method, and n is the number
of the samples in the training set.

The influences in the number of the descriptors (N) for the
three different columns on the correlation coefficient (R2), the
cross-validated coefficient (R2

CV), and the squared standard error
(s2) are shown in Figure 1. In the different columns, three multi-
linear regression models were constructed respectively. The sta-
tistical parameters (R2 and t-test) of the models and the
corresponding physical-chemical meanings to the selected
descriptors are summarized in Table II. Table III gives the corre-
lation matrix of each selected descriptor for every column. The
linear correlation coefficient value of each two descriptors was
< 0.80 (Table III), which meant that the descriptors were inde-
pendent of each other in this multi-linear analysis. Tables I
and IV show the results of the HM models using the selected
descriptors. For example, on the Chromolith column, the best
regression model had a correlation coefficient of R2 = 0.9264,
F = 141.53, and the cross-validated coefficient of R2

CV = 0.9095.
The cross-validated coefficient result confirmed the predictive
capability of this model. This model gave an RMSE of 0.7124
retention units for the whole set.

In all of the three models, the topological descriptor Kier and
Hall index (KHI1 or KHI3) is involved. This descriptor means that
the structure of the molecules is a very important factor for RP-
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HPLC. According to the values of the t-test, this descriptor is also
the most important factor in RP-HPLC. It represents the size of
the hydrophobic segment and contained group contributions
from all non-hydrogen atoms in the fragment. It is defined as:

where Zi is the total number of electrons in the ith atom, Z v
i is

the number of valance electrons, and Hi is the number of
hydrogen directly attached to the ith atom. The positive values
indicate that the shapes of the molecules are in favor of retention
times. The electrostatic descriptors CHAS and HACA-2/TMSA are
related to the hydrogen bonding capacity of the compounds.
Furthermore, CHAS encodes the hydrophilicity of the com-
pounds. An increase in this descriptor strengthens the
hydrophilicity of the molecule, decreases the interaction
between the solute and stationary phase, and then favors the elu-
tion process. The other descriptor HACA-2/TMSA is hydrogen

Figure 1. R2, R2
CV, and s2 vs. the number of descriptors for the three regres-

sion models [Symmetry C18 (A), Chromolith (B), SG-MIX (C)].

Table II. The Linear Models of Training Set for Three
Columns

Descriptor Chemical meaning Coefficient t-Test

Column: Symmetry C18*
(constant) Intercept 0.238 0.118
CHAS Count of H-acceptor sites –1.923 –14.359

(Zefirov’s PC)
KHI3 Kier and Hall index (order 3) 3.038 16.002
MSPBO Max SIGMA-PI bond order –74.268 –6.580
HLEG HOMO–LUMO energy gap 1.208 6.184

Column: Chromolith†

(constant) Intercept 5.018 8.342
CHAS count of H-acceptor sites –1.216 –7.903

(Zefirov’s PC)
KHI1 Kier and Hall index (order 1) 1.372 14.763
TDM Tot dipole of the molecule –0.548 –7.282
M1ERIC Min 1-electron react. index –74.003 –4.707

for a C atom

Column: SG-MIX‡

(constant) Intercept 9.990 17.810
HACA-2/TMSA HACA-2/TMSA (Zefirov’s PC) -569.800 -7.112
KHI3 Kier and Hall index (order 3) 2.067 13.540
TDM Tot dipole of the molecule -0.428 -5.638
M1ERIC Min 1-electron react. index -73.586 -4.616

for a C atom

* R2 = 0.9389, F = 172.83, s2 = 0.5701, R2
CV = 0.9228, n = 62.

† R2 = 0.9264, F = 141.53, s2 = 0.5296, R2
CV = 0.9095, n = 62.

‡ R2 = 0.9118, F = 113.66, s2 = 0.5548, R2
CV = 0.8890, n = 61.

Table III. Correlation Matrix of the Four Selected
Descriptors of Each Column’s Model Used in This Work*

CHAS KHI3 MSPBO HLEG

Column: Symmetry C18
CHAS 1
KHI3 –0.109 1
MSPBO 0.381 –0.001 1
HLEG –0.049 –0.633 –0.072 1

CHAS KHI1 TDM M1ERIC

Column: Chromolith
CHAS 1
KHI1 –0.100 1
TDM 0.610 –0.107 1
M1ERIC 0.374 0.246 0.232 1

HACA-
2/TMSA KHI3 TDM M1ERIC

Column: SG-MIX
HACA-2/TMSA 1
KHI3 –0.178 1
TDM 0.577 –0.137 1
M1ERIC 0.294 0.276 0.230 1

* The definitions of all the descriptors are shown in Table II.

KHI3 =
where

Z v
i – Hi

Zi – Z v
i – 1

(δi1δi2δi3δi4)–1/2 δi =
N

i = 1
Σ



bond acceptor charged surface area/total molecular surface area.
These descriptors account sufficiently for the electrostatic and
hydrogen bonding influence on the retention of the compounds
and it relates to the hydrogen-bonding interactions. The descrip-
tors refer to the area-weighted surface charge of hydrogen
bonding acceptor atoms. This descriptor describes the
hydrophilicity of the solutes. From the values of the t-test, it can
be concluded that the hydrophobicity was the main
characteristic for RPLC, especially in the C18 Symmetry
column. The negative values of t indicated that the larger the
descriptor, the smaller the retention.

In the Chromolith and SG-MIX models, the descriptor Tot
dipole of the molecule (TDM) (35) was involved. TDM calculates
the total dipole moment of a molecule, and describes the dipole
moment and divisive ability of the compounds. The dipole
moment of the molecule is defined as

where φ is molecular orbital, r̂ is electron position operator, Zα
is the ath atomic nuclear charge and Rα is position vector of ath
atomic nucleus. It can describe the polar interactions from per-
manent or induced dipoles between solute, stationary-phase, and
mobile phase molecules. The values of the t-test indicated that
TDM plays an important role in the Chromolith and SG-MIX
columns, which was in good agreement with reference 30. By
comparing the values of t, we found that the lower polarity of the
SG-MIX was in comparison to the Chromolith column. The
negative values indicated that these structural features made a
negative contribution to the retention times.

In the Symmetry C18 model, two other quantum chemical
descriptors were involved. The descriptor max SIGMA-PI bond
order (36) relates to the strength of intramolecular bonding
interactions and characterize the stability of the molecules, their
conformational flexibility, and other valency-related properties.
The SIGMA bond describes the hydrophilicity of the molecule,
and the PI bond describes the hydrophobicity of the compound.
The higher the descriptor, the stronger the hydrophilicity of the
compound. The last descriptor is quantum-chemical descriptor
HOMO-LUMO energy gap (εHOMO – εLUMO) (37). It is an approxi-
mate estimate of the first electron excitation energy in the
UV/visible spectra of the molecule or of the bandgap between
valence and empty zone in solids.

Other descriptors have small t-test values, so the roles of these
descriptors were not significant. They were not discussed in this work.

From the previously mentioned discussions, we can conclude
that the selected descriptors can account for the structural
features which are responsible for the retention behaviors of

analytes. Based on the discussion of the meaning of the
descriptors, it can be concluded that there are several factors
influencing the retention of solutes: (i) Steric interactions
between the solute and the stationary phase; (ii) Hydrogen bond
interactions, especially in Symmetry C18; (iii) Polar interactions
from permanent or induced dipoles between solute, stationary-
phase, and mobile phase molecules, especially in the Chromolith
column. As mentioned previously, it could be seen that the QSRR
method provides a new way to research the properties of the
columns. All of the conclusions are in agreement with references
9 and 34.

Support vector regression model
Selection of the kernel function and parameter of the SVM

The performances of non-linear approach SVM for regression
depend on the combination of several parameters, such as
capacity parameter C, ε of the ε-insensitive loss function, the
kernel type K, and its corresponding parameters. C is the regu-
larization parameter that controls the trade-off between maxi-
mizing the margin and minimizing the training error. If C is too
small, then insufficient stress will be placed on fitting the
training data. If C is too large, then the algorithm will overfit the
training data. But reference 38 indicated that prediction error
was scarcely influenced by C. To make the learning process
stable, a large value should be set for C (e.g., C = 100).

The kernel type is an important one. For regression tasks, the
Gaussian kernel is commonly used. The form of the Gaussian
function in R is as follows:

K(u,v) = exp(–γ* |u – v|2)

Where γ is a constant, the parameter of the kernel; u and v are
two independent variables; and γ controls the amplitude of the
Gaussian function and, therefore, controls the generalization
ability of SVM. We had to optimize γ. Each RMSE based on the
LOO cross-validation of training set was plotted versus γ (Figure
2) on the Chromolith column. As shown in Figure 2, the optimal
value is 0.05.

The optimal value for ε depends on the type of noise present in
the data, which is usually unknown. Even if enough knowledge
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µ = – Zα Rαφi r̂φi dv + →∞

i = 1(V)
Σ

Μ

α = 1
Σ

(F)

∫

Table IV. The Results of the HM

HM (training set) Test set

Column R2 R2
CV F s2 R2

Symmetry C18 0.9389 0.9228 172.83 0.5701 0.8770
Chromolith 0.9264 0.9095 141.53 0.5296 0.8968
SG-MIX 0.9118 0.8890 113.66 0.5548 0.8940

Figure 2. The gamma vs. RMSE on LOO cross-validation in the Chromolith
model (C = 100, epsilon = 0.03).
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of the noise is available to select an optimal value for ε, there is
the practical consideration given to the number of resulting sup-
port vectors. ε-insensitivity prevents the entire training set
meeting boundary conditions and so allows for the possibility of
sparsity in the dual formulation’s solution. Choosing the appro-
priate value of ε is critical from theory. To find an optimal value
of ε, the RMSE of LOO cross-validation for the training set on dif-
ferent ε was calculated. The curve of RMSE versus the epsilon is
shown in Figure 3 (on the Chromolith column), respectively.
The optimal value of ε was found as 0.03.

On the Symmetry and SG-MIX columns, we used the same
method to select the optimum values of γ and ε. On the
Symmetry C18 column, the γ and ε were 0.1 and 0.02, respec-
tively. On the SG-MIX column, the γ and ε were 0.01 and 0.02,
respectively.

The predicted results of SVM
From the above discussion, in the Gaussian-kernel SVM, the

optimal γ, ε, and C were 0.1, 0.02, and 100 on the Symmetry C18
column; 0.05, 0.03, and 100 on the Chromolith column; and
0.01, 0.02, 100 on the SG-MIX column, respectively. The pre-
dicted results of the optimal SVM are shown in Tables I and V, and
in Figure 4. The proposed models were statistically stable and
fitted the data well. For example, on the Chromolith column, the
experimental data, the predicting data values of the training data,

and the testing data by the SVM model are listed in Table I under
the optimal model. The model gave the RMSE 0.5922 for the
training set, 0.5149 for the testing set, and 0.5781 for the whole
set; the corresponding square correlation coefficients (R2) were
0.9464, 0.9503, and 0.9468, respectively.

From analysis of the results obtained from linear HM regres-
sion models and non-linear SVM models, we conclude that non-
linear models can simulate the relationship between the
structural descriptors and the chromatography retention of
compounds more accurately. SVM can correctly represent the
structure-retention relationships of these compounds. The
molecular descriptors calculated solely from the structures can

Figure 4. Plot of predicted retention vs. experimental values of the training set
and test set. Symmetry C18 column model by SVM (gamma = 0.1, epsilon =
0.02, C = 100) (A); Chromolith column model by SVM (gamma = 0.05,
epsilon = 0.03, C = 100) (B); SG-MIX column model by SVM (gamma = 0.05,
epsilon = 0.03, C = 100) (C).

Table V. The Results of the SVM

SVM

Column Training set Test set Total

Symmetry C18 R2 0.9794 0.9695 0.9766
RMSE 0.4186 0.5205 0.4402

Chromolith R2 0.9464 0.9503 0.9468
RMSE 0.5922 0.5149 0.5781

SG-MIX R2 0.9429 0.9274 0.9289
RMSE 0.5718 0.8510 0.6355

Figure 3. The epsilon vs. RMSE on LOO cross-validation in the Chromolith
model (C = 100, gamma = 0.05).

Experimental data

Experimental data

Experimental data
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describe the structural features of the compounds, which were
responsible for their retention behaviors. The characteristics of
hydrophobia play an important role in the retention of the com-
pounds on the Symmetry C18, Chromolith, and SG-MIX
columns. The retention of the compounds on the three columns
are determined by several intermolecular interactions, such as
polar interactions between solute, stationary-phase, and mobile
phase molecules; hydrogen bond interactions; and steric interac-
tions between the solute and the stationary phase.

Comparison with the literature
In order to make a comparison, the results of HM, SVM, and

the original reference (30) are listed in detail in Table VI. From
Table VI, it can be concluded that the SVM method is a powerful
tool to model the relationship between the retention times of
compounds and different columns in RP- HPLC. Moreover, from
Table I and Figure 4, it can be seen clearly that the three QSRR
models possessed good prediction ability. The predicted values
were in good agreement with the experimental results.

Conclusions

Accurate linear and nonlinear QSRR models of the retention
times of compounds in the three columns (Symmetry C18,
Chromolith, and SG-MIX) were built based on HM and SVM,
respectively. The linear and non-linear models gave satisfactory
results. From the comparison of the obtained results, the SVM
method gave the better results, and the prediction of the reten-
tion times was in agreement with the experiment value. We con-
clude that: (i) The linear model constructed by HM could
correctly represent the relationship between the retention times
and the molecular structures calculated from the chemical
structures alone. The selected descriptors can illuminate the fea-
tures of the compounds which were responsible for their reten-
tion behaviors, such as steric interactions, the hydrogen bond
interactions, polar interactions, and characteristics of
hydrophobic. This information will be helpful to direct and
understand the actual experiments. (ii) Nonlinear regression
models can simulate the HPLC retention phenomena more
accurately than the linear model. In summary, this investigation
developed a new method to research the characteristics of
columns. It can also provide another idea for dealing with other
QSRR problems.
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